9,572 research outputs found

    REPORT OF THE WESTERN EXTENSION PUBLIC AFFAIRS COMMITTEE

    Get PDF
    Teaching/Communication/Extension/Profession,

    MONTANA'S EXPERIENCES IN TAXATION AND FINANCE EDUCATION

    Get PDF
    Public Economics,

    Radio Linear and Circular Polarization from M81*

    Get PDF
    We present results from archival Very Large Array (VLA) data and new VLA observations to investigate the long term behavior of the circular polarization of M81*, the nuclear radio source in the nearby galaxy M81. We also used the Berkeley-Illinois-Maryland Association (BIMA) array to observe M81* at 86 and 230 GHz. M81* is unpolarized in the linear sense at a frequency as high as 86 GHz and shows variable circular polarization at a frequency as high as 15 GHz. The spectrum of the fractional circular polarization is inverted in most of our observations. The sign of circular polarization is constant over frequency and time. The absence of linear polarization sets a lower limit to the accretion rate of 10−7M⊙y−110^{-7} M_\odot y^{-1}. The polarization properties are strikingly similar to the properties of Sgr A*, the central radio source in the Milky Way. This supports the hypothesis that M81* is a scaled up version of Sgr A*. On the other hand, the broad band total intensity spectrum declines towards milimeter wavelengths which differs from previous observations of M81* and also from Sgr A*.Comment: Astronomy & Astrophysics, minor changes, matching the published version, also available at http://www.mpifr-bonn.mpg.de/staff/abrunthaler/pub.shtm

    The Allen Telescope Array Twenty-centimeter Survey -- A 700-Square-Degree, Multi-Epoch Radio Dataset -- II: Individual Epoch Transient Statistics

    Full text link
    We present our second paper on the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch, ~700 sq. deg. radio image and catalog at 1.4 GHz. The survey is designed to detect rare, bright transients as well as to commission the ATA's wide-field survey capabilities. ATATS explores the challenges of multi-epoch transient and variable source surveys in the domain of dynamic range limits and changing (u,v) coverage. Here we present images made using data from the individual epochs, as well as a revised image combining data from all ATATS epochs. The combined image has RMS noise 3.96 mJy / beam, with a circular beam of 150 arcsec FWHM. The catalog, generated using a false detection rate algorithm, contains 4984 sources, and is >90% complete to 37.9 mJy. The catalogs generated from snapshot images of the individual epochs contain between 1170 and 2019 sources over the 564 sq. deg. area in common to all epochs. The 90% completeness limits of the single epoch catalogs range from 98.6 to 232 mJy. We compare the catalog generated from the combined image to those from individual epochs, and from the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency. We are able to place new constraints on the transient population: fewer than 6e-4 transients / sq. deg., for transients brighter than 350 mJy with characteristic timescales of minutes to days. This strongly rules out an astronomical origin for the ~1 Jy sources reported by Matsumura et al. (2009), based on their stated rate of 3.1e-3 / sq. deg.Comment: 28 pages, 12 figures, ApJ accepte

    Space VLBI Observations Show Tb>1012KT_b > 10^{12} K in the Quasar NRAO 530

    Get PDF
    We present here space-based VLBI observations with VSOP and a southern hemisphere ground array of the gamma-ray blazar NRAO 530 at 1.6 GHz and 5 GHz. The brightness temperature of the core at 1.6 GHz is 5×10115 \times 10^{11} K. The size is near the minimum observable value in the direction of NRAO~530 due to interstellar scattering. The 5 GHz data show a single component with a brightness temperature of ∼3×1012\sim 3 \times 10^{12} K, significantly in excess of the inverse Compton limit and of the equipartition brightness temperature limit (Readhead 1994). This is strong evidence for relativistic motion in a jet requiring model-dependent Doppler boosting factors in the range 6 to 60. We show that a simple homogeneous sphere probably does not model the emission region accurately. We favor instead an inhomogeneous jet model with a Doppler boosting factor of 15.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter
    • …
    corecore